From individual to collective behaviour of coupled velocity jump processes: a locust example

نویسندگان

  • Radek Erban
  • Jan Haškovec
چکیده

Abstract. A class of stochastic individual-based models, written in terms of coupled velocity jump processes, is presented and analysed. This modelling approach incorporates recent experimental findings on behaviour of locusts. It exhibits nontrivial dynamics with a “phase change” behaviour and recovers the observed group directional switching. Estimates of the expected switching times, in terms of number of individuals and values of the model coefficients, are obtained using the corresponding Fokker-Planck equation. In the limit of large populations, a system of two kinetic equations with nonlocal and nonlinear right hand side is derived and analyzed. The existence of its solutions is proven and the system’s long-time behaviour is investigated. Finally, a first step towards the mean field limit of topological interactions is made by studying the effect of shrinking the interaction radius in the individual-based model when the number of individuals grows.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The energetics of the jump of the locust Schistocerca gregaria.

The anatomy of the metathoracic leg is redescribed with particular reference to storage of energy in cuticular elements and the way in which the stored energy is used in jumping. The jump of adult male locusts requires an energy of 9 mJ and that of the female requires 11 mJ. The semilunar processes of each metafemur store 4 mJ at a stress of 15 N, and the extensor tibiae apodeme stores a furthe...

متن کامل

Dynamics and stability of directional jumps in the desert locust

Locusts are known for their ability to jump large distances to avoid predation. The jump also serves to launch the adult locust into the air in order to initiate flight. Various aspects of this important behavior have been studied extensively, from muscle physiology and biomechanics, to the energy storage systems involved in powering the jump, and more. Less well understood are the mechanisms p...

متن کامل

From Signal Transduction to Spatial Pattern Formation in E. coli: A Paradigm for Multiscale Modeling in Biology

The collective behavior of bacterial populations provides an example of how cell-level decision-making translates into population-level behavior, and illustrates clearly the difficult multi-scale mathematical problem of incorporating individual-level behavior into population-level models. Here we focus on the flagellated bacterium E. coli, for which a great deal is known about signal detection,...

متن کامل

Velocity-jump models with crowding effects.

Velocity-jump processes are discrete random-walk models that have many applications including the study of biological and ecological collective motion. In particular, velocity-jump models are often used to represent a type of persistent motion, known as a run and tumble, that is exhibited by some isolated bacteria cells. All previous velocity-jump processes are noninteracting, which means that ...

متن کامل

Increased muscular volume and cuticular specialisations enhance jump velocity in solitarious compared with gregarious desert locusts, Schistocerca gregaria.

The desert locust, Schistocerca gregaria, shows a strong phenotypic plasticity. It can develop, depending upon population density, into either a solitarious or gregarious phase that differs in many aspects of behaviour, physiology and morphology. Prominent amongst these differences is that solitarious locusts have proportionately longer hind femora than gregarious locusts. The hind femora conta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010